Figure. Calculate T_1 and T_2 when whole system is going upwards with acceleration = 2 ms⁻² (use g = 9.8 ms⁻²)

Sol. As the whole system is going up with acceleration = $a = 2ms^{-2}$

As given that, $m_1 = 5 \text{ kg}$, $m_2 = 3 \text{ kg}$, $g = 9.8 \text{ m/s}^2$

Tension in a string is equal and opposite in all parts of a string.

For the upper block of mass 5 kg, the forces on mass m₁

$$T_1 - T_2 - m_1 g = m_1 a$$

$$T_1 - T_2 - 5g = 5a$$

$$T_1 - T_2 = 5 (g + a)$$

For the lower block of mass 3 kg, the force on mass

$$T_2 - m_2 g = m_2 a$$

$$T_2 = m_2 (g + a) = 3 (9.8 + 2) = 3 \times 11.8$$

$$T_2 = 35.4N$$

$$T_1 = T_2 + 5(g+a)$$

$$\Rightarrow$$
 T₁ = 35.4 + 5(9.8+2) = 94.4 N